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In this paper, we present a simple and efficient method for rotating a spherical harmonic
expansion. This is a well-studied problem, arising in classical scattering theory, quantum
mechanics and numerical analysis, usually addressed through the explicit construction
of the Wigner rotation matrices. We show that rotation can be carried out easily and stably
through ‘‘pseudospectral” projection, without ever constructing the matrix entries them-
selves. Existing fast algorithms, based on recurrence relations, are subject to a variety of
instabilities, limiting the effectiveness of the approach for expansions of high degree.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Spherical harmonics arise in a variety of problems in mathematical physics. They can be viewed, for example, as the angu-
lar part of the separation of variables solution of the Laplace or Helmholtz equation in spherical coordinates or as the basis
for Fourier analysis on the sphere. Taking the former perspective (briefly), we recall that any harmonic function u can be
represented in spherical coordinates ðr; h;/Þ as
uðr; h;/Þ ¼
X1
n¼0

Xn

m¼�n

Lm
n rn þ Mm

n

rnþ1

� �
Ym

n ðh;/Þ; ð1Þ
where
Ym
n ðh;/Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� jmjÞ!
ðnþ jmjÞ!

s
� Pjmjn ðcos hÞeim/: ð2Þ
Here, / is the azimuthal angle of the target point with respect to the x-axis and h is the polar angle with respect to the z-axis.
The Ym

n are called spherical harmonics of degree n and order m. The special functions Pm
n are the associated Legendre func-

tions and can be defined by the Rodrigues’ formula
Pm
n ðxÞ ¼ ð�1Þmð1� x2Þm=2 dm

dxm PnðxÞ;
where PnðxÞ is the usual Legendre polynomial of degree n [12,1,15].
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For functions regular at the origin, the coefficients Mm
n must be zero, while for functions regular at infinity, the coefficients

Lm
n must be zero. The coefficients Lm

n and Mm
n are known as the moments of the expansion.

In the present paper, we are interested in the problem of expanding u in a rotated coordinate system. This arises as a com-
putational task in quantum mechanics [1,7,15], scattering theory [13] and numerical analysis, particularly in some imple-
mentations of the fast multipole method (FMM) [4,8,9,17]. Since it is the angular coordinates ðh;/Þ that are relevant, we
may (without loss of generality) consider only functions on the unit sphere of the form
uðh;/Þ ¼
X1
n¼0

Xn

m¼�n

Mm
n Ym

n ðh;/Þ: ð3Þ
1.1. Rotation operators

Let E denote the usual coordinate system defined by the axes:
e1 ¼ ð1;0;0Þ; e2 ¼ ð0;1;0Þ; e3 ¼ ð0;0;1Þ; ð4Þ
and let F be a rotated orthogonal coordinate system with the same origin and axes f1; f 2; f 3. We will occasionally refer to PE

as the coordinate representation of a point P with respect to E and PF as the coordinate representation of P with respect to F.
We assume that ða; b; cÞ are the standard Euler angles [1,15] that define the rotation from E to F using the z—y—z conven-

tion in a right-handed frame. That is, we first rotate by an angle a about the z-axis, then by an angle b about the new y-axis,
and finally by an angle c about the new z-axis.

Theorem 1 (See, for example, [1]). Let ðh;/Þ denote the coordinates of a point P in the system E and let ðh0;/0Þ denote the
coordinates of P in the system F. Then the function uðPÞ defined in (3) can be expressed as
uðh0;/0Þ ¼
X1
n¼0

Xn

m0¼�n

Mm0

n Ym0

n ðh
0;/0Þ; ð5Þ
where
Mm0

n ¼
Xn

m¼�n

Dm0 ;m
n �Mm

n : ð6Þ
The coefficients of the transformation are given by
Dm0 ;m
n ¼ eimcdm0 ;m

n ðbÞeima; ð7Þ
where
dm0 ;m
n ðbÞ ¼ ð�1Þm

0�m½ðnþm0Þ!ðn�m0Þ!ðnþmÞ!ðn�mÞ!�1=2r
X

s

ð�1Þs
cos b

2

� �2ðn�sÞþm�m0
sin b

2

� �2s�mþm0

ðnþm� sÞ!s!ðm0 �mþ sÞ!ðn�m0 � sÞ! ; ð8Þ
with the range of s determined by the condition that all factorials are non-negative.

Remark 1.1. The formula (8) is due to Wigner [18]. Note that the rotation operator uncouples spherical harmonics of dif-
ferent degree.

Suppose now that we have truncated the spherical harmonic expansion (3) at degree n ¼ p, leaving Oðp2Þ coefficients to
consider. It is clear that the angle a and c rotations about the z-axes in (7) are diagonal and require only Oðp2Þwork. The cost
of computing the rotation through an angle b about the y-axis, however, requires Oðp3Þ work even if the coefficients
fdm0 ;m

n ðbÞg were given.

2. Recurrence relations

Assuming the rotations matrices have not been precomputed and stored, it is the calculation of the entries fdm0 ;m
n ðbÞg

themselves that dominates the cost of spherical harmonic rotation. The Wigner formula (8) clearly requires Oðp4Þ work (p
operations for each of the p3 matrix entries), and is also subject to numerical instability when implemented naively. As a
result, existing methods have tended to rely on the use of recurrences to compute the matrix entries [1,2,5,6,9,11,14,16,17].

One such scheme is based on the three basic recurrence relations below. These can be derived using formula (3.83) from [1].
dm0 ;m
n ðbÞ ¼ cos2 b

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþmÞðnþm� 1Þ
ðnþm0Þðnþm0 � 1Þ

s
dm0�1;m�1

n�1 ðbÞ � 2 sin
b
2

� �
cos

b
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþmÞðn�mÞ

ðnþm0Þðnþm0 � 1Þ

s
dm0�1;m

n�1 ðbÞ

þ sin2 b
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�mÞðn�m� 1Þ
ðnþm0Þðnþm0 � 1Þ

s
dm0�1;mþ1

n�1 ðbÞ; ð9Þ
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dm0 ;m
n ðbÞ ¼ sin2 b

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþmÞðnþm� 1Þ
ðn�m0Þðn�m0 � 1Þ

s
dm0þ1;m�1

n�1 ðbÞ þ 2 sin
b
2

� �
cos

b
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþmÞðn�mÞ

ðn�m0Þðn�m0 � 1Þ

s
dm0þ1;m

n�1 ðbÞ

þ cos2 b
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�mÞðn�m� 1Þ
ðn�m0Þðn�m0 � 1Þ

s
dm0þ1;mþ1

n�1 ðbÞ; ð10Þ

dm0 ;m
n ðbÞ ¼ sin

b
2

� �
cos

b
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþmÞðnþm� 1Þ
ðnþm0Þðn�m0Þ

s
dm0 ;m�1

n�1 ðbÞ þ cos2 b
2

� �
� sin2 b

2

� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�mÞðnþmÞ
ðn�m0Þðnþm0Þ

s
dm0 ;m

n�1 ðbÞ

� sin
b
2

� �
cos

b
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�mÞðn�mþ 1Þ
ðn�m0Þðnþm0Þ

s
dm0 ;mþ1

n�1 ðbÞ: ð11Þ
It is straightforward to compute dm0 ;m
n ðbÞ from (9)–(11), and we have used these recurrences in our FMM implementations

[4,8] for more than a decade. They require only Oðp3Þ work and, for expansions up to degree 40, encounter no significant
numerical difficulties. We recently became interested, however, in some multiple scattering calculations [10] which involve
spheres one or two hundred wavelengths in size, requiring expansions of degree up to one thousand or so. All of the recur-
rence-based schemes of which we are aware begin to lose significant accuracy once p reaches about one hundred and have
no digits of accuracy once p equals two hundred.

Remark 2.1. It is worth noting that the full rotation operator can be applied using only Oðp2Þ storage, although the work
scales as Oðp3Þ. This follows from the fact that (9)–(11) describe a two-term recurrence in the degree n. Thus, two matrices of
size p� p provide sufficient temporary storage, so long as one is willing to carry out the recurrence each time the operator is
to be applied.

Before turning to our pseudospectral projection-based scheme, it is useful to define a suitable measure of accuracy. We
have chosen to compute the L2 norm of the error in rotating the multipole moments of degree n:
E ¼
Pn

m¼�njM
m0

n �M
m0
n j

2Pn
m¼�njM

m0
n j

2 ; ð12Þ
whereMm0
n denotes the exact value of the rotated expansion coefficient. For data, we first compute the outgoing multipole

coefficients due to a Helmholtz (acoustic) source at 1=
ffiffiffi
2
p

;1=
ffiffiffi
2
p

;0
� �

with unit strength:
Mm
n ¼ jnðkÞY

m
n ðp=2;p=4Þ;
with the Helmholtz parameter k ¼ p, where jnðkÞ denotes the spherical Bessel function of degree n and p is the degree of the
truncated expansion. By rotating the source location, it is straightforward to compute the exact coefficients Mm0

n .
A plot of accuracy as a function of expansion degree (y-axis) and rotation angle (x-axis). Shown are the contours of �log10ðEÞwith E defined in (12) -
the number of digits of accuracy.



5624 Z. Gimbutas, L. Greengard / Journal of Computational Physics 228 (2009) 5621–5627
The performance of the recurrence is plotted in Fig. 1 using 64-bit arithmetic. The x-axis denotes the angle of rotation and
the y-axis denotes the degree of the expansion. The contours show the number of digits of accuracy in using the recurrences
(9)–(11). Note that for expansions of degree 40, the results are accurate to 13 digits, that at degree 100 the results are accu-
rate to about 8 digits, and that at degree 180 all accuracy is lost.

Remark 2.2. It should be noted that errors in rotation don’t translate directly into errors in evaluating the field from a
rotated expansion. In a resolved multipole expansion, the high order modes have decayed rapidly and mask the error for a
time. Once the 100th mode is making a significant contribution however, the 8 digit loss will be manifested, and once the
180th mode is making a significant contribution, the loss of accuracy will be seen in the field evaluation as well.

Similar results (or worse) are obtained for all the recurrence schemes we tested.
3. Rotation via pseudospectral projection

In order to derive a stable scheme, consider the unit sphere rotated by an angle b about the y-axis (Fig. 2). An elementary
calculation shows that in the new coordinate system
Fig. 2.
sphere
ðx; y; zÞ ! ðx0; y0; z0Þ ¼ ðcos bx� sin bz; y; sin bxþ cos bzÞ:
The inverse mapping is given by
ðx0; y0; z0Þ ! ðx; y; zÞ ¼ ðcos bx0 þ sin bz0; y0;� sin bx0 þ cos bz0Þ:
We denote the rotated equator by C, parameterized in the rotated frame as
C ¼ ðcos /0; sin /0;0Þ; /0 2 ½0;2p�:
Definition 3.1. Let h0 denote the unit vector in the h0 direction on the equator of the rotated sphere (Fig. 2):
h0 ¼ ð0;0;�1Þ:
On C, we define the functions Fn and Gn by
Fnð/0Þ � Fnðcos /0; sin /0;0Þ ¼
Xn

m¼�n

Mm
n Ym

n ðh;/Þ; ð13Þ

Gnð/0Þ � Gnðcos /0; sin /0;0Þ ¼ @Fn

@h0
ð/0Þ ¼ rFnð/0Þ � h0: ð14Þ
A sphere rotated about the y-axis by an angle b. The x-axis is mapped to the x0-axis and the z-axis is mapped to z0-axis. C is the equator on the rotated
and h0 is the unit vector in the h0 direction in the rotated frame.
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Here, ðh;/Þ denote the spherical coordinates in the original frame of the target point P 2 C. Since P ¼ PF ¼ ðcos /0; sin /0;0Þ in
the rotated frame, we can compute PE ¼ ðcos b cos /0; sin /0;� sin b cos /0Þ in the original frame, from which it is straightfor-
ward to compute ðh;/Þ.

Lemma 1. Let Fn and Gn be given by (13) and let
f m0
n ¼

1
2p

Z 2p

0
Fnð/0Þe�im0/0d/0; gm0

n ¼
1

2p

Z 2p

0
Gnð/0Þe�im0/0d/0: ð15Þ
Then
Mm0

n ¼
f m0
n
dPm0

n ð0Þ þ gm0
n
dQ m0

n ð0ÞdPm0
n ð0Þ

2 þdQm0
n ð0Þ

2
; ð16Þ
where
cPm
n ðcos h0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� jmjÞ!
ðnþ jmjÞ!

s
� Pjmjn ðcos h0Þ;

dQm
n ðcos h0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� jmjÞ!
ðnþ jmjÞ!

s
� d
dh0

Pjmjn ðcos h0Þ:
Proof. We expand Fnð/0Þ as a spherical harmonic expansion in the rotated frame, with h0 ¼ p=2 on C so that cos h0 ¼ 0:
Fnð/0Þ ¼
Xn

m¼�n

Mm0

n
dPm0

n ð0Þeim0/; ð17Þ

Gnð/0Þ ¼
Xn

m¼�n

Mm0

n
dQ m0

n ð0Þeim0/: ð18Þ
Fourier analysis of (17) and (18) yields
f m0
n ¼ Mm0

n
dPm0

n ð0Þ;

gm0
n ¼ Mm0

n
dQm0

n ð0Þ;
and the result follows from solving these two equations for Mm0

n in a least squares sense. h

Remark 3.1. The reason we use a least squares procedure is that for some values of n and m0, one of Pm0

n ð0Þ;Q
m0

n ð0Þ vanishes.
They never vanish simultaneously, so that the formula in Eq. (16) is always applicable.

Remark 3.2. By analogy with the literature on spectral methods, we refer to this scheme as pseudospectral projection. That is,
in order to carry out a transformation in the spectral domain (spherical harmonic coefficients), we have mapped back to
‘‘physical space” (values on the rotated unit sphere) in an intermediate stage.

Remark 3.3. The integrands in (15) are band-limited so that the trapezoidal rule is exact so long as the number of quadra-
ture nodes is greater than 2p [3].

Algorithm. Rotation via Pseudospectral Projection

1. Choose 2pþ 2 equispaced nodes on C.
2. Compute the coordinates ðh;/Þ of each node in the original coordinate system.
3. For each node, compute Fnð/0Þ and Gnð/0Þ. (This requires the calculation of Ym

n ðh;/Þ and its gradient at a cost of p2 work
per node.)

4. For n ¼ 0; . . . ; p, use the FFT to compute f m0
n and gm0

n .
5. Compute Mm0

n using (16).

The total cost of the procedure is clearly Oðp3Þ. Stability is a consequence of the fact that we are simply using orthogonal
projection of the function evaluated at equispaced points on the rotated equator. The experiment carried out in Section 2
using recurrence relations was repeated using the projection procedure described above, using 64-bit arithmetic. We plot
the maximum of the error over all rotation angles as a function of expansion degree in Fig. 3. The number of digits of accu-
racy lost scales roughly with the logarithm of the expansion degree. At p ¼ 1000, about 13 digits of accuracy were obtained
for all rotation angles.
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4. Conclusions

We have presented a simple scheme for rotating a spherical harmonic expansion of arbitrary degree p based on pseudo-
spectral projection rather than the explicit construction of the rotation matrix. For low order expansions (up to p ¼ 40 or so),
either approach is satisfactory. The recurrence-based approach is, in our implementation, about twice as fast. On the other
hand, in applications where p is significantly greater, the existing recurrence-based schemes break down while the projec-
tion-based scheme does not. Both approaches can be carried out using Oðp2Þ storage. If the same rotation matrix is to be ap-

plied repeatedly and storage is not an issue, saving the values of dPm0
n and dQm0

n at the quadrature nodes on the rotated equator
C can save a factor of 3 in CPU time.

Because of the simplicity of the implementation, we expect the method to be of use in a variety of applications, especially
high frequency scattering calculations.
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Appendix A. Computation of Gnð/0Þ

The computation of Gnð/0Þ in (14) is straightforward. In the original coordinate system,
h0 ¼ ð� sin b;0;� cos bÞ
and
rFn ¼
@Fn

@h
@h
@x
þ @Fn

@/
@/
@x

;
@Fn

@h
@h
@y
þ @Fn

@/
@/
@y

;
@Fn

@h
@h
@z
þ @Fn

@/
@/
@z

� �
;

where
@h
@x
¼ cos h cos /;

@h
@y
¼ cos h sin /;

@h
@z
¼ � sin h;

@/
@x
¼ � sin /;

@/
@y
¼ cos /;

@/
@z
¼ 0:
The quantities @Fn
@h and @Fn

@/ are easily computed from the spherical harmonic representation (13).

References

[1] L.C. Biedenharn, J.D. Louck, Angular Momentum in Quantum Physics : Theory and Application, Addison-Wesley, Reading, MA, 1981.
[2] M.A. Blanco, M. Florez, M. Bermejo, Evaluation of the rotation matrices in the basis of real spherical harmonics, J. Mol. Struct. (Theochem.) 419 (1997)

19–27.



Z. Gimbutas, L. Greengard / Journal of Computational Physics 228 (2009) 5621–5627 5627
[3] W.L. Briggs, V.E. Henson, The DFT: An Owner’s Manual for the Discrete Fourier Transform, SIAM, 1995.
[4] H. Cheng, W.Y. Crutchfield, Z. Gimbutas, L. Greengard, F. Ethridge, J. Huang, V. Rokhlin, N. Yarvin, J. Zhao, A wideband fast multipole method for the

Helmholtz equation in three dimensions, J. Comput. Phys. 216 (2006) 300–325.
[5] C.H. Choi, J. Ivanic, M.S. Gordon, K. Ruedenberg, Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion, J.

Chem. Phys. 111 (1999) 8825–8831.
[6] H. Dachsel, Fast and accurate determination of the Wigner rotation matrices in the fast multipole method, J. Chem. Phys. 124 (2006) 144115–144121.
[7] A.R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press, Princeton, 1957.
[8] L. Greengard, V. Rokhlin, A new version of the fast multipole method for the Laplace equation in three dimensions, Acta Numer. 6 (1997) 229–269.
[9] N. Gumerov, R. Duraiswami, Recursions for the computation of multipole translation and rotation coefficients for the 3-D Helmholtz Equation, SIAM J.

Sci. Comput. 25 (2003) 1344–1381.
[10] A.J. Hesford, J.P. Astheimer, L. Greengard, R.C. Waag, A mesh-free approach to acoustic scattering from multiple nested objects using the fast multipole

method, submitted for publication.
[11] J. Ivanic, K. Ruedenberg, Rotation matrices for real spherical harmonics. Direct determination by recursion, J. Phys. Chem. 100 (1996) 6342–6347.
[12] J.D. Jackson, Classical Electrodynamics, Wiley, New York, 1975.
[13] P.A. Martin, Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles, Cambridge University Press, Cambridge, 2006.
[14] D. Pinchon, P.E. Hoggan, Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in space-fixed axes, J. Phys. A: Math. Theor.

40 (2007) 1597–1610.
[15] M.E. Rose, Elementary Theory of Angular Momentum, John Wiley & Sons, Inc., 1957.
[16] E.O. Steinborn, K. Ruedenberg, Rotation and translation of regular and irregular solid spherical harmonics, Adv. Quantum. Chem. 7 (1973) 1–81.
[17] C.A. White, M. Head-Gordon, Rotating around the quartic angular momentum barrier in Fast Multipole Method calculation, J. Chem. Phys. 105 (1996)

5061–5067.
[18] E.P. Wigner, Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren, Vieweg Verlag, Braunchweig, 1931.


	A fast and stable method for rotating spherical harmonic expansions
	Introduction
	Rotation operators

	Recurrence relations
	Rotation via pseudospectral projection
	Conclusions
	Acknowledgments
	Computation of {G}_{n}( {\phi}^{\prime})
	References


